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Motivation

(Jarosik et al. 2010) (Jarosik et al. 2010)
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Multipole moment

(Larson et al. 2010) (Bock et al. 2009)

If a tensor signal is seen, the inflaton must have moved
over a super-Planckian distance in field space™ yth 199

* For single field models with canonical kinetic term



Motivation

This is hard to control in an EFT field theory

1 1
V(g) = Vo + 5m*¢" + S g’ +

P I
n=1

(A < M,)

The ¢, are typically unknown.

Even if they were known, the effective theory is
generically expected to break down for¢ > A, e.g.
because other degrees of freedom become light.




Motivation

Possible Solution:

Use a field with a shift symmetry, e.g. axion.
Break the shift symmetry in a controlled way.

first example.in string theory
Silverstein, Westphal, arXiv:0803.3085

(see Marco Peloso’s and Enrico Pajer’s talks for further references)
If the inflaton is an axion, periodic contributions
to the potential can arise leading to

V(g) = Valo) + A" cos ()

numerical studies Chen, Easther, Lim, arXiv:0801.3295
Hannestad, Haugboelle, Jarnhus, Sloth, arXiv:0912.3527



Summary of Results

The primordial power spectrum

The usual slow-roll derivation breaks down
because of parametric resonance, and the
Mukhanoyv-Sasaki equation has to be solved.

d*Ri. 2(1+ 2e+0) dRy

F R =0
d? T dx 5
with ¢ =¢, — 3bf/2¢, cos (¢k+ ,f2€* lnx)
§ =6, — 3bsin <¢k y’ sze* 1”)

r=k/aH and b=A*"/V'(p.)f



Summary of Results

The primordial power spectrum

d2Rk 2(1 + Oosc (x)) ARy

F R =0
dx? X dx 4

Look for. a-solution
o) |. | T - .70
Ri(x) = R,g% [z\/;xS/QHS)Q(:U) — c,g )(x)z\/;x?’/QHé%(x)]

Then for large x




Summary of Results

The primordial power spectrum

(Linear potential with f = 107°M,, b = 107?%.)



Summary of Results

The primordial power spectrum

One finds ;
ks
bl — ACE 1 + dng cos Ok
k. f
with
9 1/2
. =l <ide, — 20% and ons = 3b k)
\/2€,
: f
(This assumes o < 1. For the general case see our paper.)

For constraints on these parameters from WMAPS for a
linear potential, see
Flauger, McAllister, Pajer, Westphal, Xu, arXiv:0907.2916



Summary of Results

The bispectrum

Models with large  can lead to large non-Gaussianities
Chen, Easther, Lim, arXiv:0801.3295

(R(k1,t)R(ke,t)R(ks,t)) ="
i * it ([R (ke DR (ke )R (ks 1), Hy (1))
with "L
Hi(t) > — / B a®(1)e()S (R (x, HR(x. 1)

* with slight abuse of notation



Summary of Results

The bispectrum

After some algebra

Gk, ko, ks) 1 /OO 0
7 R T

LY = SNC.C

K =k + ko + ks



Summary of Results

The bispectrum

G(k1, ke, ks3) . [l
R LTes In K k*
k1kaks ! [sm( J 0 A ) b
f k@ <\/2€* )
+ — COS nK/k, | +...
\/26* ; kj f /
with
K = ki + ko + k3
A0, v 2T [/ 2¢, JK
ST = 2 7

This satisfies the consistency condition.



Summary of Results

The bispectrum
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Summary of Results

Existing constraints on local, equilateral,
and orthogonal shapes cannot be used to infer
constraints on this shape.
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Summary of Results

An expansion in a factorizable polynomial basis is
limited to larger axion decay constants for which the
amplitude is small.

..oo°°‘° fres<0-3

Ve f=10"2




Conclusions

® This shape of non-Gaussianities might be
present in the case of large field inflation, but
is currently essentially unconstrained.

® Techniques to measure general shapes
including this shape are desirable

Fergusson, Liguori, Shellard, arXiv:0912.5516, ...
Meerburg, arXiv:1006.2771

® Maybe our analytic results will aid in
~ constraining this shape...

® ..but there is still more work to be done to
ensure we do not miss out on interesting
physics



Thank you




